Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications

Nooshin Zandi, Ehsan Shirzaei Sani, Ebrahim Mostafavi, Dina M. Ibrahim, Bahram Saleh, Mohammad Ali Shokrgozar, Elnaz Tamjid, Paul S. Weiss, Abdulreza Simchi, Nasim Annabi

ABSTRACT

The development of bioinks based on shear-thinning and self-healing hydrogels has recently attracted significant attention for constructing complex three-dimensional physiological microenvironments. For extrusion-based bioprinting, it is challenging to provide high structural reliability and resolution of printed structures while protecting cells from shear forces during printing. Herein, we present shear-thinning and printable hydrogels based on silicate nanomaterials, laponite (LA), and glycosaminoglycan nanoparticles (GAGNPs) for bioprinting applications. Nanocomposite hydrogels (GLgels) were rapidly formed within seconds due to the interactions between the negatively charged groups of GAGNPs and the edges of LA. The shear-thinning behavior of the hydrogel protected encapsulated cells from aggressive shear stresses during bioprinting. The bioinks could be printed straightforwardly into shape-persistent and free-standing structures with high aspect ratios. Rheological studies confirmed the ability of GLgels to support cell growth, proliferation, and spreading. In vitro osteogenic differentiation of pre-osteoblasts murine bone marrow stromal cells encapsulated inside the GLgels was also demonstrated through evaluation of ALP activity and calcium deposition. The subcutaneous implantation of the GLgel in rats confirmed its in vivo biocompatibility and biodegradability. The engineered shear-thinning hydrogel with osteoinductive characteristics can be used as a new bioink for 3D printing of constructs for bone tissue engineering applications.

1. Introduction

Hydrogels, three-dimensional (3D) hydrophilic polymer networks, are extensively used for biomedical applications due to their natural moisture content, biocompatibility, and similarity of their physical and biological properties to native tissues [1–3]. Recently, printable
hydrogels have developed for engineering complex cell-laden 3D constructs for tissue engineering applications [4-6]. Shear-thinning hydrogels have many advantages compared to other biomaterials for 3D bioprinting. Their rheological properties, including Herschel-Bulkley flow and stress-relaxation behavior, make them injectable through a needle or catheter [7]. Although the use of shear-thinning hydrogels has recently gained much attention as bioinks, the development of cell-responsive bioinks that can provide high structural reliability and precision has been lacking, to date [8].

Two main approaches, including covalent and non-covalent methods, are used to crosslink hydrogels [9]. Different types of hydrogels have been developed based on covalent crosslinking approaches, which are initiated through the addition of a chemical crosslinker [10], radical polymerization by light exposure [11], or changes in temperature [12] or pH [13]. As crosslinking through covalent bounds forms a permanent network, this method results in construction of robust, tough, and elastic networks. However, most common chemical crosslinkers are toxic and their fate in native tissues and organs are not well understood [14,35]. As a result, additional purification may be required before their use for biomedical applications. Moreover, covalently crosslinked hydrogels lack self-healing capability, i.e., recovering to initial state when the applied stress is removed. For these crosslinked hydrogels, the arrangement of their networks is disrupted when the material undergoes deformation (e.g., injection forces through a needle or catheter).

Unlike covalently crosslinked hydrogels, most physically crosslinked hydrogels, developed by ionic interactions, complexation, or aggregation approaches, can reform spontaneously [16]. Self-assembly approaches using non-covalent crosslinking, which involve hydrogel bonds, electrostatic, host-guest, and hydrophobic interactions or a combination of them, enable fabrication of moldable, printable, and injectable hydrogels with shear-thinning properties [17]. Self-healing hydrogels with viscous flow under extrusion pressure are attractive materials for 3D bioprinting [4]. Practically, low shear viscosity is advantageous for bioprinting because thinner needles (high gauge) can be used while shielding cells from high shear forces [15]. Such hydrogel systems are utilized for both bioprinting and implantation in vivo via direct injection [18]. In addition, approaches based on increased affinity between polymers and hard nanostructure surfaces (e.g., silicate nanoplatelets) have previously been used to fabricate shear-thinning hydrogels [16]. Engineered nanocomposite hydrogels have been widely used for cell delivery [6,19], growth factor delivery [17], and the development of embolic biomaterials for endovascular embolization [20]. However, cell proliferation and spreading are typically limited by insufficient cell binding sites within these nanocomposite hydrogels or their inappropriate mechanical stiffness, which may hinder their usage as tissue engineering scaffolds [21]. Therefore, it is essential to develop shear-thinning and self-healing bioinks that can effectively support 3D cell growth and proliferation.

The applications of bioprinting have been limited due to the lack of suitable bioinks to meet both 3D printing and tissue engineering demands [22]. Ideal bioinks should not only be capable to form mechanically stable 3D constructs, but also must protect cells through printing process and provide a suitable environment for remodeling into the target tissue [23]. Combining all these requirements to develop bioinks with good printability and biocompatibility to form high resolution 3D structures is challenging [7]. Therefore, intensive studies have been performed to develop printable and structurally stable bioinks which can also protect encapsulated cells [24].

Recent studies have shown that incorporation of laponite (LA) inside hydrogels can significantly promote the rheological and mechanical properties of resulting biomaterials [21,25]. Furthermore, in vitro studies have also revealed that LA improves chondrogenic differentiation of human bone marrow stromal cells (hBMSCs) and stimulates osteogenic differentiation of human mesenchymal stem cells (hMSCs) without the use of growth factors [17]. On the other hand, the physiochemical characteristics of glycosaminoglycans (GAGs) [26] make these polymers promising candidates to prepare hydrogels through hybridization with silicate nanomaterials. Glycosaminoglycans in native tissue are covalently bound to proteins, forming the basic proteoglycan. Once bound to proteins, GAGs react with several superficial cell sites [27]. Naturally and chemically modified GAGs have been shown to induce osteogenic differentiation of hMSCs [28,29]. However, to our knowledge, there has been no report of engineering shear-thinning hydrogels based on glycosaminoglycan nanoparticles (GAGNPs).

In this study, we report the formation of a hydrogel-based bioink (Glgel) that combines GAGNPs with LA as a versatile strategy to generate cell-laden bioprinted constructs. We investigate the effects of GAGNPs on the printability, and rheological properties, swelling and degradation characteristics of the nanoengineered GAGNPs/LA hydrogels. We then evaluate the in vitro biocompatibility and osteogenic properties of the resulting hydrogels. Finally, the engineered shear-thinning hydrogels are used as bioinks for printing cell-laden constructs with freestanding and high shape fidelity. These shear-thinning hydrogels can be used as osteoinductive bioinks for printing cell-laden complex constructs.

2. Materials and methods

2.1. Materials

Chondroitin sulfate B sodium salt (from porcine intestinal mucosa, ≥90%, lyophilized powder, 60 KDa; PDI = 1.94) and poly-l-lysine (PLL) (0.1% w/v in H2O), sodium acetate, sodium chloride, potassium chloride, sodium phosphate dibasic, paraformaldehyde, Triton, bovine serum albumin (BSA), and potassium phosphate monobasic were obtained from Sigma-Aldrich (St. Louis, MO, USA). Two dimensional (2D) clay particles (Laponite XLG) with a thickness of 1 nm and lateral dimensions of 20 – 50 nm were obtained from BYK Additives Inc (Rochester Hills, MI, USA). Dulbecco’s phosphate-buffered saline (DPBS, Gibco), Dulbecco’s modified Eagle’s medium (DMEM) media (Gibco), Minimum Essential Medium Alpha (MEM α), ethidium homodimer-1 (EthD-1), Calcein AM, PrestoBlue assay, Alexa Fluor 594-phalloidin, and 4′,6-diamidino-2-phenylindole (DAPI), and rhodamine-phalloidin were purchased from Thermo Fisher Scientific (USA). QuantiChrom Calcium Assay kit, and QuantiChrom Alkaline Phosphatase Activity kit were purchased from BioAssay Systems (Hayward, CA, USA).

2.2. Preparation of proteoglycan nanoparticles (GAGNPs)

To form GAGNPs, chondroitin sulfate sodium salt (1.8 mg mL⁻¹) (polyanion) and PLL (1 mg mL⁻¹) (polycation) were each dissolved in 0.1 M acetate buffer (pH = 5.5) under vigorous mixing [30]. The solutions were then filtered by using a poly (vinylidene fluoride) syringe filter (0.22 μm, Thermo Fisher Scientific) to remove aggregated particles. The PLL solution was then added dropwise to an excess amount of GAG (1:6 volumetric ratios) under vigorous stirring. The resulting mixtures were settled overnight, and the supernatant solution was then decanted and centrifuged at 6000 RCF for 15 min. Finally, the precipitates were lyophilized (Labconco, USA) to obtain GAGNPs as a white powder.

2.3. Preparation of shear-thinning nanocomposite bioinks (Glgels)

Dispersed LA was prepared by exfoliating LA powder in MilliQ water followed by vortexing for 20 min. GAGNPs solution was then quickly mixed with the LA dispersion and immediately vortexed for 1 min to yield homogenized gels. Different concentrations of LA (20, 25, 30, and 35 mg mL⁻¹) at fixed GAGNPs/LA weight ratio (1:120) were used to prepare different Glgel compositions (20GLgel, 25GLgel, 30GLgel, and 35GLgel). Final concentrations of GAGNP in 20, 25, 30, and 35GLgels were 0.17, 0.21, 0.25, and 0.3 mg mL⁻¹, respectively. All Glgel solutions were used immediately for rheological analysis.

N. Zandi et al.
Biomaterials 267 (2021) 120476
2.4. Scanning electron microscopy (SEM)

SEM images of GLgels were taken using a Hitachi S-4800 SEM at an acceleration voltage of 3 kV. After preparing the hydrogel, 1 ml glucose solution (0.1 M) was added to 0.5 ml of the hydrogels in order to preserve the gel structure during freeze drying. The hydrogels were then flash frozen in liquid nitrogen followed by lyophilization (Labconco, USA). Finally, the lyophilized hydrogels were placed on aluminum stubs and sputter coated by gold/palladium (about 6 nm) before imaging.

2.5. Transmission electron microscopy (TEM)

TEM images of GAGNPs were acquired using a JEM-1010 (JEOL, Tokyo, Japan) machine. To prepare the samples, a drop of the diluted suspension of GAGNPs was placed on a copper-coated grid (Formvar/Carbon 200 mesh, Copper) and air dried prior to imaging. TEM images of GAGNPs were acquired using a JEM-1010 (JEOL, Tokyo, Japan) machine. To prepare the samples, a drop of the diluted suspension of GAGNPs was placed on a copper-coated grid (Formvar/Carbon 200 mesh, Copper) and air dried prior to imaging.

2.6. In vitro swelling

GLgels were flash frozen in liquid nitrogen and lyophilized overnight. The original weights of the samples were then measured, and each sample was placed in a Transwell insert with 1 μm pores. Next, 1 ml of DPBS was added to the wells and another 300 μl of DPBS was added to the Transwell inserts to prevent the surface of the GLgels from drying during incubation. The well plates were then incubated at 37 °C for 24 h. At each selected time point, the weights of swollen samples were measured. The swelling ratio (SR%) was calculated using the following equation [31]:

\[
SR(\%) = \frac{W_{wet} - W_{dry}}{W_{dry}} \times 100
\]

where \(W_{dry}\) represents the weight of initial dry and \(W_{wet}\) is the weight of the wet sample after swelling at different time points.

2.7. In vitro degradation

Samples were weighed and transferred to 1.5 ml microcentrifuge tubes containing 500 μl DPBS and incubated at 37 °C for different time points (up to 28 days). At each time point, the samples were removed from solution, lyophilized overnight, and re-weighed. The weight loss (WL%) was determined according to equation (3) [32]:

\[
WL(\%) = \frac{W_i - W_f}{W_i} \times 100
\]

where \(W_i\) represents the initial weight and \(W_f\) is the weight of the sample after swelling at time \(t\).

2.8. Zeta potential analysis

Zeta potentials of the particles were determined by a Malvern Zetasizer (Ver. 6.00, UK). To do this, a suspension of LA (10 mg mL\(^{-1}\)) was prepared and mixed with GAGNPs suspensions with different concentrations in the range of 0.025–0.25 mg mL\(^{-1}\). In addition, LA (10 mg mL\(^{-1}\)) and GAGNPs (0.025–0.25 mg mL\(^{-1}\)) suspensions were separately analyzed as controls.

2.9. Evaluation of compressibility and injectability

The injectability of GLgels was evaluated using an Instron mechanical tester (Instron 5542). Briefly, the materials were placed in 3 ml plastic syringes and then fixed between upper compression platen and lower tensile grips. The gels were then injected through a medical catheter (5-French Beacon). The injection rate was controlled by changing the cross speed of the compression platen to achieve the desired flow rates. The amount of force (N) to inject the material was then determined using a Bluehill version 3 software (n ≥ 3).

To determine the mechanical characteristic of GLgels, compression test was performed on cylindrical specimens (6 mm in diameter and 1.8 mm in height) prepared by injection of the gels inside polydimethylsiloxane (PDMS) molds. The gels were transferred to 3 ml syringes and the trapped bubbles were removed by centrifugation (2000 rpm for 2 min). After injection of ~1 ml gel solution per mold, the solidified samples were removed from the molds. Compression tests were performed at a strain rate of 1 mm min\(^{-1}\). Compression moduli were calculated from the slopes of loading stress vs strain curves at strain level between 0 and 10%, as described previously (n ≥ 3) [33].

2.10. Rheological tests

A hybrid rheometer (Discovery HR-1) was used to investigate the viscoelastic properties of the LA and GLgel samples. A parallel-plate geometry (40 mm diameter) with 27 μm gap distance was used for rheological assessments. Angular frequency sweep was evaluated to measure storage (\(G'\)) and loss (\(G''\)) moduli with frequencies from 0.1 to 100 rad s\(^{-1}\) in a linear strain region of 0.1%. Additionally, the steady shear rate sweep (10\(^{-3}\) to 10 s\(^{-1}\)) was measured to characterize the behavior of the materials. Shear recovery experiments were performed at the stepwise strain of 100% with 0.1% strain recovery at 1 Hz frequency (5 min for each step). Strain sweeps were performed across a strain range of 0.001%–100% at 1 rad s\(^{-1}\) frequency. Steady shear properties were measured over a range of 10\(^{-3}\) to 10\(^{2}\) s\(^{-1}\). To evaluate the shear recovery of the samples, step strain was measured at a high strain (100%) with recovery at a low strain (0.1%). \(G'\) and \(G''\) modules were recorded for three cycles at the frequency of 1 Hz. All rheological examinations were repeated at least three times (n ≥ 3).

2.11. 2D cell encapsulation

NIH 3T3 cells (American Type Culture Collection (ATCC) (Manassas, VA, USA) were cultured at 37 °C and 5% CO\(_2\) in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with penicillin/streptomycin (1% (v/v)) and FBS (10% (v/v)). 30GLgel and 35GLgel were selected for 2D cell culturing. 2D cell seeding was performed as described elsewhere [34]. Briefly, 10 μl of the gels were pipetted on the surface of a glass slide and spread over it to cover 1 cm x 1 cm area. After placing the samples in 24 well-plate, 3T3 cells were seeded on the hydrogel surface (10\(^5\) cells gel\(^{-1}\)) and incubated in humidity 95% containing 5% CO\(_2\) for 45 min at 37 °C. Next, 400 μl of media was added to each well, and incubated for 7 days. The culture media was replaced with fresh media every day.

2.12. 3D cell encapsulation

W-20-17 stromal cells were cultured in Minimum Essential Medium Alpha (MEMx) supplemented with 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin at 37°C and 5% CO\(_2\). Prior to cell encapsulation, the GLgels were sterilized through UV exposure for 30 min. For 3D cell encapsulation, 30GLgel precursor solution was prepared in DPBS and mixed gently with the cells (10\(^5\) cells mL\(^{-1}\)). A 10 μl of the mixture was then pipetted on a spacer with a thickness of 150 μm and then covered by a glass slide. The cell-laden hydrogels were then placed in a 24 well plate and incubated at 37 °C for 5 days.

2.13. Cell viability and metabolic activity

A commercial Live/Dead assay kit (Invitrogen) was utilized to determine the viability of cells after 1, 3, and 5 days following 2D and 3D cultures. Briefly, cells were stained with ethidium homodimer-1 (EthD-1, 2 μL mL\(^{-1}\) in DPBS) for dead cells and Calcein AM (0.5 μL mL\(^{-1}\) in DPBS) for live cells. The samples were then incubated for 15 min at 37 °C and then washed three times with DPBS to remove the remaining stains.
Finally, stained samples were imaged using an inverted fluorescence microscope (Zeiss Axio Observer Z1, Carl Zeiss microscopy). The obtained images were analyzed using ImageJ software (National Institutes of Health, USA) to calculate cell viability (%) by dividing the number of live cells by the total cell number [35].

Metabolic activity of the cells was assessed using a PrestoBlue assay (Thermo Fisher Scientific) according to the manufacturer’s instructions. Briefly, cell-seeded hydrogels were incubated in 500 μL of growth media. After 1, 3, and 5 days of culture, 10% of the media was removed and replaced with an equal amount (50 μL) of PrestoBlue solution. Next, the cells were incubated for 45 min at 37 °C/5% CO₂. Fluorescence intensity of the solutions was recorded using a plate reader (Syringe HT fluorescence, BioTek) at 535–560 nm excitation and 590–615 nm emission [36].

2.14. Cell adhesion, spreading and proliferation

Cell adhesion and spreading were evaluated through fluorescent staining of F-actin filaments with Alexa Fluor 594—phalloidin (Invitrogen) and cell nuclei with DAPI. Briefly, the cells were fixed in 4% (v/v) paraformaldehyde (Sigma) for 20 min and then permeabilized with 0.1% (w/v) Triton X-100 solution in DPBS for 45 min. Next, 1% (w/v) bovine serum albumin (BSA) solution in DPBS was used to block the samples for 20 min. Samples were then incubated with Alexa-fluor 488 phalloidin (1:400 dilution in 0.1% BSA, Invitrogen) at 37 °C for 45 min. After three times washing with DPBS, the samples were counterstained with 1 μL/mL DAPI in DPBS for 5 min followed by washing three times with DPBS. Fluorescent images were acquired using an inverted Axio Observer Z1 microscope. The number of cell nuclei stained with DAPI was counted by using ImageJ software [11].

2.15. Calcium deposition assay

Calcium deposition tests were performed using a QuantiChrom Calcium Assay kit according to the manufacturer’s protocol. Briefly, cells (10⁵ cell mL⁻¹ gel) were seeded on 30GLgel, 30LA and polystyrene tissue culture well-plate as control. The samples were then incubated at 37 °C and 5% CO₂ for 7 days. At different time points (1, 5, and 7 days), the samples were washed with DI water, followed by adding 0.60 M HCl (1 mL) and incubating at room temperature for 4 h on a shaker (120 rpm). Cell lysates were centrifuged at 12,000 rpm for 3 min, and 5 μL of the supernatant of each sample was mixed with 200 μL of the working reagent and incubated at room temperature for 3 min. Absorbance intensity was recorded at 612 nm by using a plate reader (Bio-Tek Inc). Calcium concentrations were determined from a standard calibration curve [37].

2.16. Quantification of calcium and phosphorus

Mineral formation in cell-seeded scaffolds (30GLgel and 30 LA) and TCP was measured by coupled plasma mass spectrometry (ICP-MS) after 7 days of incubation. Calcium and phosphorus were detected in both scaffolds and TCP. The samples were transferred to a digestion tube, then digested with concentrated nitric acid (67–70%). This solution was then introduced to ICP-MS (NexION 350D ICP-MS, PerkinElmer, USA) for the elemental analysis.

2.17. Alkaline phosphatase activity assay

Alkaline phosphatase (ALP) activity was measured using a QuantiChrom Alkaline Phosphatase Activity assay according to the manufacturer’s protocol. Briefly, cells (10⁵ per 1 mL gel) were seeded on 30GLgel, 30LA and tissue culture well plates. After washing with DPBS, samples were incubated with 0.2% Triton for 20 min at room temperature on a shaker (120 rpm). Next, 2 μL of pNPP, 200 μL of assay buffer, and 5 μL of Mg acetate solutions were added to 50 μL of the cell lysates. The same amount of the reagents was added to 50 μL mill-Q water as a blank control. The absorbance was read at 405 nm immediately and after 4 min and the ALP content was calculated according to equation (4):

\[
\text{ALP content} = \frac{(\text{OD}_{\text{Sample}(t)} - \text{OD}_{\text{Sample}(0)}) \times \text{Vol}_{\text{reaction}}}{(\text{OD}_{\text{blank water}} - \text{OD}_{\text{water}}) \times \text{Vol}_{\text{Sample}(0)}} \times 35.3
\]

where OD_{Sample(t)} and OD_{Sample(0)} are OD_{Sample} values at t = 4 min and t = 0, respectively.

2.18. 3D bioprinting

30GLgel was used as a bioink for bioprinting purposes. The bioink was loaded into a 3 mL syringe and centrifuged at 2000–3000 rpm for 1 min to remove the trapped bubbles. Food coloring was used to increase the visibility of the bioink. An Inkredible 3D bioprinter (Cellink, USA) was used to printing the bioink at room temperature, with a moving speed of 100%, filament gaps of 1 mm, and nozzle gauge of 25G. During the printing process, the extrusion pressure was changed from 50 to 85 kPa to optimize the bioprinting conditions. A 3D CAD drawing software was used to generate stereolithography (STL) files and converted to G-codes using Slic3r toolbox. Rectangle structures (2 cm × 2 cm) were built by replicate printing of multilayers with a height of 1 mm. Hollow cylinders were also printed with an outer diameter of 1 cm, inner diameter of 0.9 cm, and height of 2 cm.

To print cell-laden constructs, W-20-17 stromal cells (5 × 10⁶ cell mL⁻¹) were mixed with the GAGNP suspensions, and LA solution was added to form 30GLgel. The cell-laden bioink was then transferred into a 3 mL syringe and printed on glass slides to form cubic and cylindrical constructs. The bioprinted samples were then kept in 12-well plates containing cell culture media and incubated at 37 °C. PrestoBlue assay was performed on days 1, 5, and 7 post culture to quantify the metabolic activity of the cells in the bioprinted constructs. F-actin staining was performed to investigate the adhesion and spreading of the cells within the bioprinted constructs after 1 and 5 days. The stained cells were visualized by using an Axio Observer Z1 fluorescence microscope (Carl Zeiss microscopy).

2.19. In vivo biocompatibility and biodegradation of GLgel

For the in vivo studies, adult male Wistar albino rats (200–250 g) were used in compliance with a protocol approved by the research ethics committee of College of Science, University of Tehran. Under isoflurane anesthesia, 100 μL of 30GLgel was injected in the back of the rats using a 31G needle. The animals were sacrificed at day 7 and day 14 post-injection. The subcutaneous tissues were harvested at the injection site. Tissues were fixed in 10% formalin for 15 min and then embedded in paraffin block. Cross sections were stained with hematoxylin and eosin (H & E). Images were obtained for each specimen by an inverted microscope Eclipse Ti (Nikon, Melville, NY).

2.20. Statistical Analyses

Results were reported as mean ± standard deviation (SD). One-way and two-way analysis of variance (ANOVA) was carried used for data analysis using a GraphPad Prism 7.0 software. Significance levels were presented as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

3. Results and discussion

3.1. GLgel synthesis

Reversible interactions between LA and GAGNPs formed a nanocomposite hydrogel network, named GLgel, through self-assembly, which enabled complete recovery of structural integrity while
supporting encapsulated cells (Scheme 1). The LA nanoparticles have negatively charged surfaces (ca. 1000 negative charges per particle) with positively charged edges (approximately 10% of the total charge) [2]. The porous structure of GLgel was formed as a combination of oppositely charged nanostructures (positively charged LA edges and negatively charged GAGNPs). In addition, the high surface areas of both LA and GAGNPs provided sufficiently dynamic interactions to form the hydrogel network. Using this technique, we engineered different compositions of GLgels including 20GLgel, 25GLgel, 30GLgel, and 35GLgel based on various concentrations of LA and GAGNPs, as summarized in Table 1.

Recently, the interactions between different polymers such as poly (ethylene glycol) (PEG) and LA has extensively investigated [38–40]. Also, several studies reported development of bioinks containing LA and different polymers such as heparin [41], PEG [7], gelatin methacryloyl (GelMA) and kappa-carrageenan (κCA) [7]. However, engineering shear-thinning bioinks based on LA and polymeric nanoparticles has not been studied. Therefore, we aimed to develop new bioinks containing polymeric nanoparticles and LA for injection and bioprinting applications.

The gel formation of LA depends on the electrostatic interactions through face-to-edge of these nanoparticles [2]. The electrostatic interactions between GAGNPs and LA could provide crosslinks which may result in gel formation (Fig. 1A). Therefore, we used zeta potential to evaluate the change of charges after mixing these two components. To this end, the LA concentration was 10 mg mL−1, so that it could interact with GAGNPs to form complex without gelation. Higher concentration can prevent the mobility of conductive particles for evaluation of zeta potential. The concentration of GAGNPs in the GL complex suspensions was in the range of 0.02–0.22 mg mL−1. Compare to the zeta potential of GAGNPs and LA as control, the GL complexes showed little decrease in zeta potential at GAGNPs:LA ratio between 1:500 and 1:250. This was followed by a relatively higher drop between 1:250 and 1:80 mg mL−1 and then reached a plateau between 1:80 and 1:53. The zeta potential profile for GAGNPs:LA ratio in the range of 1:250 to 1:80 showed that most of the negatively charged GAGNPs were bound to the positively charged LA edges. Few free GAGNPs contributed to the zeta potential at this range. The drop in the zeta potential between 1:250 and 1:80 mg mL−1 of GAGNPs:LA ratio could be due to a saturating absorption of GAGNPs to LA. Above this threshold, free GAGNPs mainly contributed to zeta potential value in a similar manner to the control GAGNPs solution (Fig. 1A). Taken together, the zeta potential measurement offered evidence for the electrostatic interactions between GAGNPs and LA edges.

Additionally, the hydrodynamic diameter of LA, GAGNPs and GL mixtures were measured using DLS. To measure the nanoparticles diameter, each solution was diluted at a fixed GAGNPs:LA ratio (1:120). The results showed that the mean size diameters were 4.1 ± 0.2 nm and 171 ± 30 nm for LA and GAGNPs, respectively. Upon mixing the nanoparticle solutions, the mean diameter size reached 7.3 ± 1.5 due to the higher concentration of LA as compared to GAGNPs in the GL complex where colloidal aggregation was not formed (Table S1).

In contrast to common preparation methods that require repeated heating/cooling cycles [42], ultrasonication [43], in situ polymerization [44], crosslinking reactions [45], or a combination of them, GLgel was formed easily by mixing two components in water at ambient temperature. Reversible interactions between LA and GAGNPs governed hydrogel formation through self-assembly with shape-persistent properties. Interestingly, complete recovery of structural integrity after removing shear stresses was attained. Scanning electron microscopy (SEM) images of lyophilized GLgel (e.g., 30GLgel) exhibited a highly interconnected porous network (Fig. 1B). GAGNPs are composed of glycosaminoglycan and poly-L-lysine (PLL), which mimic proteoglycan structures in native ECM. Transmission electron microscopy (TEM) images of GAGNPs indicated individual spherical particles with an average diameter of 60 ± 11 nm (Fig. 1C and D). The hydrogel also exhibited

Scheme 1. Synthesis and application of glycosaminoglycan nanoparticle/laponite gel (GLgel). (A) Schematic for the formation of glycosaminoglycan nanoparticles (GAGNPs), and the fabrication process for GLgel. The electrostatic interactions between chondroitin sulfate sodium salt (GAG) and poly-L-lysine (PLL) formed GAGNPs. The GLgel was then formed by mixing GAGNPs and LA. (B) Shape-persistent properties of GLgel. Representative images of (C) LA solution, and (D) GLgel. (E) Cell adhesion and spreading on GLgel. The structure of GLgel is (F) flow conditions (during extrusion), and (G) stress-relaxation status (after extrusion).
appropriate structural stability after 3 weeks incubation in Dulbecco’s phosphate-buffered saline (DPBS) at 37 °C (Fig. S1A).

3.2. Injectability and mechanical strength of GLgel

As the injectability of the developed GLgel is critical for bioprinting, the required force to inject the hydrogel through a clinical 5-French catheter (ID = 0.97 mm), at a fixed flow rate of 34 cm min\(^{-1}\), was measured using an Instron mechanical tester (Fig. 2 A). The injection force was increased linearly with time and then plateaued, showing a stable, steady flow. The plateau profile indicated that the hydrogel began to extrude through the catheter (Fig. S1B). The injection force values of LA samples were 1.4 ± 0.1, 4.0 ± 0.2, 8.0 ± 0.5, and 9.6 ± 0.4 for 20LA, 25LA, 30LA, and 35LA, respectively (Fig. 2 B). However, upon mixing GAGNPs with LA for all compositions, the injection force was increased significantly, as compared to pure LA. The injection force was increased from 6.43 ± 0.40 for 20GLgel to 10.5 ± 0.5, 16.6 ± 0.6, 17 ± 0.2 for 25GLgel, 30GLgel, and 35GLgel, respectively (Fig. 2 B). These results indicated strong interactions between the two components, depending on the compositions of GLgel. For all compositions, the hydrogels flowed easily from the catheter at relatively low pressure and could be injected by hand.

The Young’s moduli of GLgels were measured to quantify the mechanical stiffness of printable hydrogels (Fig. 2C and S1C). As made, LA dispersions up to 35 mg mL\(^{-1}\) concentration (35LA) were unable to form stable gel through face-to-edge interactions; therefore, measurement of the compression modulus of resulting weak networks was not possible. However, when combined with extreme low concentrations of GAGNPs (<0.3 mg mL\(^{-1}\)), stable hydrogel networks were formed (Fig. 2D). This result suggests that without the use of any crosslinking agents, GLgels with tunable compressive modulus could form with varying concentrations of GAGNPs and LA. The compressive modulus was increased from 0.7 ± 0.1 kPa for 20GLgel to 2.4 ± 0.3 and 4.6 ± 0.2 kPa, for 25GLgel- and 30GLgel, respectively. However, the modulus decreased to 3.1 ± 0.1 kPa for 35GLgel. This decrease could be due to the lack of sufficient interactions between GAGNPs and LA at this concentration.

3.3. In vitro swelling ratio and degradation properties of GLgel

Swellability of hydrogels and their stability in physiological environment are important parameters as they determine their high permeability and stability during the tissue regeneration process [46, 47]. We studied the effect of GLgel compositions (with 20, 25, 30, and 35GLgel) on the swelling ratio and in vitro degradation of the hydrogels. For comparison, hydrogels based on LA suspensions (20, 25, 30, and 35LA) were examined as controls. LA platelets enabled formation of weak gels through “house-of-cards” structures, which are time and concentration dependent [48]. Since LA suspensions (up to 35 mg mL\(^{-1}\)) could not form hydrogel networks rapidly through house-of-card structures, the experiment was conducted after 48 h incubation of LA solutions at room temperature to ensure formation of weak hydrogel networks. As shown in Fig. 2E and F, the values for swelling ratios varied

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>20GLgel</th>
<th>25GLgel</th>
<th>30GLgel</th>
<th>35GLgel</th>
<th>20LA</th>
<th>25LA</th>
<th>30LA</th>
<th>35LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA conc. (mg ml(^{-1}))</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>GAGNP conc. (mg ml(^{-1}))</td>
<td>0.17</td>
<td>0.21</td>
<td>0.25</td>
<td>0.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 1. Surface and topographical properties of glycosaminoglycan nanoparticle/laponite gel (GLgel). (A) Zeta potential measurements of laponite (LA), glycosaminoglycan nanoparticle (GAGNP) solution, and GLgel suspension (diluted GLgel) as a function of GAGNP concentration. For zeta potential measurement, GLgel suspension containing GAGNP (0.01–0.21 mg mL\(^{-1}\)), and LA (10 mg mL\(^{-1}\) LA) were used. (B) Representative scanning electron microscopy (SEM) images of 30GLgel showing the porous structure of the GLgel. (C) Representative transmission electron microscopy (TEM) image and (D) size distribution histogram of GAGNPs.
with both incubation time and hydrogel compositions. Generally, for both LA gels and GLgels, the highest swelling ratio was observed after 6 h. In addition, the networks formed based on LA showed drops in swelling ratios from 16 to 24 h, which could be due to the instability of the LA gels. The swelling ratios of GLgels after 24 h reached to 3039 ± 80% for 20GLgel, 2324 ± 90% for 25GLgel, 4795 ± 100% for 30GLgel, and 1834 ± 200% for 35GLgel. In contrast to LA (Fig. 2 F), no weight loss was observed for GLgels, which we attribute to their improved structural stability in physiological conditions and sustained integrity. In addition, the swelling ratio of GLgels was tunable with different hydrogel compositions.

The degradation of hydrogels in DPBS at 37 °C was evaluated at different time points by measuring the dried weight loss (Fig. 2 G–H). Complete degradation for all formulations of LA gels was observed after 14 days incubation in DPBS at 37 °C. However, the GLgel group lost only up to 23% of their masses over the same period of time. GLgels continued to be stable up to 21 days incubation in DPBS. Under this condition, the materials retained up to 60% of their initial mass after 28 days of incubation. We attribute the stability of the GLgel in DPBS to the interactions between LA and GAGNPs in the hydrogel network.

3.4. Viscoelastic properties of GLgel

Rheological properties of the engineered GLgels including angular frequency, shear rate sweep, and strain sweep analysis were examined at 25 °C (Fig. 3). Angular frequency sweep profiles indicated that all compositions of GLgels had stable G' values which were ~20 times greater than G'' in the range of 0.1–100 rad s⁻¹. These results confirmed the zeta potential data, indicating that GAGNPs and LA were able to form stable networks quickly at a certain GAGNPs:LA ratio (1:120), which was used in all GLgels (Fig. 3A). In the case of GLgel, the two components rapidly formed network structure, and some of the anchored GAGNPs were shared by the adjacent LA to form crosslinks. Therefore, 1:120 GAGNPs:LA was suitable to form stable gel. Regarding zeta potential analysis, a higher GAGNPs:LA ratio (1:80) was required for the saturating absorption. Shear rate sweep measurements demonstrated that all compositions of GLgel exhibited shear-thinning behavior in which the viscosity of material depended on the shear force required for hydrogel extrusion. In contrast, shear rate sweep measurements of LA (30LA) as a control indicated that the viscosity did not change with shear rate, as derived from Newtonian fluid properties (Fig. 3B). As shown in Fig. 3B (inset), a homogeneous gel was formed upon injection through a syringe. Previous studies on the injectability of gels containing oppositely charged dextran microspheres showed filter-pressing effect [49]. This filter-pressing phenomenon was not observed in our nanoscale-based system due to the smaller pore sizes in the GLgel network, which decreased the aqueous phase flowability [50]. The injectability of the material is related to its ability to remain homogeneous under pressure without phase separation [51].

The relationship between viscosity (η) and shear rate (γ) can be expressed by the following power-law equation [18]:

$$\eta = K \gamma^{n-1}$$

where K and n describe the consistency index and flow index,
respectively. The latter (n) is a critical parameter to characterize the flow properties of a material, where n < 1 indicates shear thinning, n > 1 shear thickening, and n = 1 represents Newtonian flow. According to the power law, the derived "n" values were calculated to be 0.12 ± 0.06, 0.18 ± 0.08, 0.26 ± 0.05, and 0.22 ± 0.12 for 20, 25, 30 and 35GLgel, respectively. This observation confirmed that small amounts of GAGNPs had a strong effect on LA shear-thinning and viscoelastic properties (Fig. 3C). The results also indicated that the presence of GAGNPs increased the shear-thinning behavior of GLgels. This change improved the printability of the GLgels by reducing flow resistance under higher shear rates during the extrusion. The consistency index (K) also increased consistently for 20, 25, and 30GLgel, showing higher viscosities at a constant shear rate. This observation suggests improved packing of LA sheets or "house-of-cards" arrangements at higher LA concentrations, demonstrating increases in viscosity at all shear rates. Importantly, these hydrogels could be injected into aqueous environments while preserving their integrity without the need for stabilizing reactions.

Strain-dependent oscillatory measurements of GLgels displayed consistent linear viscoelastic behavior followed by network failure at high strains (Fig. 3D and S2A). At low strains, both storage and loss moduli were independent on strain. Herein, G’ was at least one order of magnitude greater than G". At a critical strain where G’ ≈ G", the gel structure was transformed from solid to liquid, showing yielding behavior. In high strain regions, the loss modulus (G") was increased and exceeded the storage modulus (G’), indicating liquid-like properties of the GLgels (Fig. 3D). The G’ values decreased beyond the critical strain (γ = 9.0%), demonstrating conversion of the hydrogel network from a gel state to a quasi-liquid state (Fig. S2A).

By increasing the LA concentration from 20 to 30 mg mL⁻¹ in GLgel formulation, the storage moduli and the viscosity enhanced with a similar trend, while 35GLgel did not show significant increases compared to 30GLgel (Fig. S2A). This difference could be due to the lack of sufficient space between LA layers at 35GLgel, which may prevent GAGNPs from interacting with LA, resulting a less stiff gel. Based on these results, the highest viscosity and storage moduli were obtained for 30GLgel (Fig. S2B).

Step-strain experiments were conducted to determine the self-healing behavior of GLgels (Fig. 3E and S2C). When the strain was switched between 1% and 100%, the materials displayed an inversion of G’ and G" at the high strain and quickly recovered their elastic properties at the low strain. Cyclic strain tests (three cycles) with 5 min intervals were also applied to monitor the self-healing efficiency (Fig. 3E and F). The results revealed ~99% recovery. Moreover, the recovery of GLgel, in each cycle of breaking and reforming, confirmed the reversible and robust nature of the non-covalently crosslinked GLgel network (Fig. 3F).
These results suggest that nanoscale-based gels can be pressed more densely than microscale-based materials. Basically, high specific surface area of nanoscale-based hydrogel induces higher resistance to shear forces. Compared to other physically crosslinked gels such as peptide-based hydrogels [52], GLgel recovery was faster. This self-healing behavior can be attributed to the fast and reversible re-establishment of the electrostatic interactions between oppositely charged GAGNPs and LA. According to the step-strain curves, all gels showed liquid behavior (gel-sol transition, tan delta: $G''/G' > 1$) at high strain (100% strain). At low strain and same frequency (1.0 Hz), G'' values were completely recovered and the system could return to its previous quasi-solid form (tan delta: <1) (Fig. 3G). This observation confirmed the self-supportive and elastic nature of the GLgels, as a result of the strong dynamic interactions and hydrogen bonding between the two components [53].

The shear-thinning properties and rapid recovery of the GLgels make them suitable for extrusion-based bioprinting [54]. Moreover, the dynamic interactions between the components of GLgels enable complete recovery of the viscoelastic properties even after multiple high strain cycles. This recovery is particularly critical for bioprinting applications, as the bioinks can be extruded through multiple layer-by-layer injections without requiring continuous extrusion. We attribute the fast gelation and stable structures of the GLgels to one or more of the following factors: (i) GAGNPs with negative surface charge may diffuse between LA platelets without microscopic aggregation to form network structures; (ii) electrostatic interactions between the two components can rapidly rearrange ionic crosslinking; and (iii) nanometer-size components facilitate uniform gelation due to high surface area, even at low concentrations of GAGNPs.

Since 30GLgel showed the highest compression modulus and suitable rheological properties, this gel composition was used as the bioink for the 3D printing of free-standing and self-supporting structures.

3.5. In vitro cytocompatibility of GLgel

NIH-3T3 fibroblast and W-20-17 bone marrow stromal cells were

Fig. 4. In vitro cytocompatibility and osteogenic differentiation of W-20-17 cells encapsulated within glycosaminoglycan nanoparticle/laponite gel (GLgel). (A) Representative live/dead images of W-20-17 cells encapsulated within 30GLgel at days 1 (i) and 5 (ii). (B) Quantification of cell viability inside 30GLgel at days 1, 3, 5 post encapsulation. (C) Representative F-Actin fluorescent images of cells encapsulated in 30GLgel, at days 1 (i) and 5 (ii) postencapsulation. (D) Metabolic activity of the 3D encapsulated cells within the 30GLgel on days 1, 3, and 5 post encapsulation. (E) Alkaline phosphatase activity of W-20-17 cells seeded on the surface of 30GLgel after 1, 3, and 7 days. (F) Quantification of calcium deposition W-20-17 cells seeded on the surface of 30GLgel after 1, 3, and 7 days. Data are presented as mean ± SD ($p < 0.05$: *, $p < 0.01$: **, $p < 0.001$: ***, and $p < 0.0001$: ****, $n \geq 3$).
used as model cells to evaluate cell viability, proliferation, and metabolic activity after they were seeded on the 30GLgel. The viability and metabolic activity of the 3T3 cells seeded on the surface of the gels (2D cell seeding) were evaluated by using a commercial Live/Dead (Fig. S3A-B) assay and a PrestoBlue kit (Fig. S3C), respectively [55]. The results showed high viability (>85%) for the cells seeded on GLgels over 7 days of culture (Fig. S3A-B). In addition, the metabolic activity of the 3T3 cells increased for up to 7 days of culture (Figure S3C), confirming the in vitro cytocompatibility of the GLgels.

Previous studies have shown that 2D silicate nanoparticles incorporated in biomaterials promoted cell adhesion and proliferation as they provide suitable cell binding sites while facilitating protein adsorption [18,48,56]. Despite numerous studies on the physiological stability and injectability of shear-thinning nanocomposite hydrogels [50,57,58], the in vitro 3D cell encapsulation within these gels has not been investigated extensively. Therefore, we aimed to evaluate the in vitro cytocompatibility of the engineered 30GLgel through 3D encapsulation of W-20-17 stromal cells within the hydrogel network. Live/dead assay, F-actin-/DAPI staining, and PrestoBlue assay were used to determine the cell viability (Fig. 4A-B), cell spreading (Fig. 4C), and metabolic activity (Fig. 4D), respectively. Cell viability was >95% over 5 days of culture based on the Live/Dead assay (Fig. 4B). Accordingly, F-actin staining revealed higher spreading of 3D encapsulated cells at day 5, when compared to day 1 post encapsulation (Fig. 4Ci, ii). Moreover, the metabolic activity of the encapsulated cells was increased during 5 days of culture, showing high viabilities and proliferation (Fig. 4D). Taken together, these in vitro assessments revealed that the engineered GLgels were cytocompatible and could improve proliferation and spreading of the cells encapsulated within their 3D structures. In contrast to the majority of the previously reported hydrogels [59–61], the GLgel synthesis process did not generate free radicals, which potentially makes it suitable for cell encapsulation purposes.

3.6. In vitro osteoinductivity of GLgel

Previous studies have shown that clay minerals not only enhance cellular adhesion and protein adsorption, but also facilitate mineralization and osteogenesis [21,29]. It has been reported that GAGs also interact with different ligands to regulate cell signaling, migration, and differentiation [62]. Here, we studied the early osteogenic responses of cell-seeded 30LA and the 30GLgel by measuring alkaline phosphatase activity (ALP) and calcium deposition values on days 1, 3, and 7 (Fig. 4E and F). To perform these tests, W-20-17 cells were seeded on 30GLgel, 30LA and tissue culture polystyrene (TCP) plates as control. After 7 days, the cells seeded on 30GLgel exhibited 1.6-fold and 4.5-fold increases in ALP activity as compared to cells seeded on 30LA and TCP, respectively (Fig. 4E). We attribute this improvement to the synergic effects of LA and GAGs on the osteoinductivity of the 30GLgel.

Moreover, the generation of bone-like inorganics in LA and 30 GLgel was confirmed via calcium deposition assay (Fig. 4F). The quantification of calcium deposition results showed significant increases in the amount of calcium ions generated on 30GLgel as compared to TCPS (6-fold on day 7). The calcium deposition on 30GLgels was 1.5-fold higher than 30LA on day 7 post-culture (Fig. 4F). Furthermore, the bone mineral concentration (Ca and P) was measured using ICP-MS. As shown in Table S2, the total amounts of calcium and phosphorous were greater in the 30GLgel and 30 LA as compared to the TCP. Overall, these results demonstrated the capability of GLgels in promoting osteogenic differentiation of pre-osteoclasts without requiring any supplemental osteoinductive factors.

3.7. 3D printing of hydrogels

The shear-thinning behavior of the GLgels make them suitable for printing precisely designed constructs through direct-write printing (supplementary movie 2). This compatibility is mainly due to the fast recovery of the material to a quasi-solid state with high storage modulus and yield stress. Herein, we investigated the effect of pressure on the printability of the developed bioinks in continuous forms and without any “dash” or “over-flowing” printed shapes. In this case, the pressure was altered from 50 to 85 Pa, while other parameters including temperature (25 °C), nozzle size (25G), and printing speed (12 mm s⁻¹) were kept constant. Printing speed is another essential parameter, especially for fabricating large cell-laden constructs [7]. However, tradeoffs between printing speed and resolution should be considered. Generally, lower printing speeds are required to fabricate high-resolution constructs [63]. However, the high printability of GLgels make it appropriate for high-speed printing of high-resolution constructs. As shown in Fig. 5A, suitable pressure for printing of the bioink was in the range of 70–80 Pa. In the next step, we printed two different structures to evaluate the printability of the GLgels (Fig. 5Bi, ii). First, a lattice construct consisting of individual filaments was printed (Fig. 5Bi, iii). Although, conventional bioinks can be used for precise printing in the x and y (lateral) directions, the printing multilayer 3D structures remains challenging. To assess the printability of GLgels on the z-axis, we printed a multi-layered hollow cylinder, in the shape of a human-scale blood vessel (9 mm interior diameter and 1 mm thickness). Using 30GLgels, we were able to print a highly stable and self-supported, multi-layer cylinder (25 layers), without using any supporting material (Fig. 5Bi, iv). While a variety of bioinks has been used for printing applications, the development of low-concentration bioinks for direct writing without any molding or subsequent chemical crosslinking is challenging. In contrast, the electrostatic interactions between LA and GAGNPs in GLgels promoted the formation of stable constructs without requiring a support bath or further chemical crosslinking (e.g., UV irradiation). In addition, the viscoelastic properties of GLgels prevented layer spreading or diffusion after extrusion.

To evaluate the structural stability of the constructs further, the printed vessels were immersed in cell culture media at 37 °C, and the dimensional changes were measured at different time points (7, 14, and 21 days) (Fig. 5C). The results showed no significant alteration in the diameters and thicknesses of the cylinders, indicating the high structural stability of the printed constructs (Fig. 5D).

3.8. 3D bioprinting

The physical and biochemical properties of bioinks directly affect cell fate. An ideal bioink should mix with cells while retaining viability during the printing process. Mixing and encapsulation of cells with viscous bioinks are often challenging and can negatively affect cell viability [64]. In contrast, the unagitated nature of GLgel formation facilitated the cell/bioink mixing process. In this process, the cells were first resuspended and mixed with GAGNPs suspension. Upon mixing with LA solution, a homogeneous gel was formed (Fig. 5E). Here, we incorporated W-20-17 cells into 30GLgel and printed a lattice structure (Fig. 5F).

F-actin staining was used to evaluate the cell spreading within the bioprinted constructs (Fig. 5Fi, iii and 54). Uniform cell spreading and proliferation were observed in the 3D bioprinted constructs at day 5 post-printing (Fig.5Fii). This result confirmed our hypothesis that the shear-thinning properties of GLgel can protect cells from stress and mechanical damage during the extrusion process [7]. Next, the metabolic activity of the cells encapsulated within the printed constructs was quantified using a PrestoBlue assay. The metabolic activity of the cells was increased from 1.1 × 10⁶ at day 1 to 2.1 × 10⁶ at day 7, indicating cell proliferation within the bioprinted 30GLgel (Fig. 5G). Overall, these results confirmed that the GLgel effectively supported cell viability, spreading, and proliferation. Recent studies have also highlighted the cell supportive properties of shear-thinning biomaterials for tissue engineering applications [16,19,60]. However, the simplicity of the GLgel formation without any chemical modification, and ease of cell encapsulation makes it a promising candidate for biomanufacturing of 3D printed
tissues.

3.9. In vivo biocompatibility and biodegradation of GLgel

30GLgel was selected for subcutaneous implantation study to evaluate the in vivo biocompatibility and biodegradation of the engineered bioinks. All animals survived throughout the study without any malignancy, infection, or abscess at the injection sites. Tissues around the gel showed no necrosis or muscle degeneration, and mild adverse reactions such as inflammation and fibrosis (Fig. 6). H&E staining showed that skin structure was intact, and no epidermal or dermal alterations or inflammatory infiltrates were detected, either 7 or 14 days after the injection. The surrounding tissue was spared from inflammation throughout the study period. Also, the H&E staining images...
revealed that biodegradation of 30GLgel allowed ingrowth of predominantly non-inflammatory cells and hydrogel replacement with the autologous tissue. These results confirmed that nanocomposite hydrogel could be effectively biodegraded in vivo.

4. Conclusion

In this study, we engineered a new class of shear-thinning biomaterials (GLgels) with tunable viscoelastic and mechanical properties for 3D bioprinting applications. The GLgel bioinks were formed through electrostatic interactions between synthetic silicate nanosheets (LA) and glycosaminoglycan nanoparticles (GAGNPs). Shear-thinning and viscoelastic properties of the hydrogels with quick recovery responses were characterized. The GLgels could be straightforwardly printed to form complex constructs with high shape retention without requiring additional crosslinking. Next, the ability of the engineered bioinks in supporting 3T3 and W-20-17 cells in both 2D and 3D culturing conditions was evaluated. In vitro studies indicated that the 3D bioprinted structures supported the adhesion, proliferation, and osteogenic differentiation of W-20-17 bone marrow stromal cells. F-actin staining also demonstrated cell spreading and attachment in the bioprinted constructs. The results of in vivo tests confirmed the biocompatibility and biodegradability of the engineered bioinks. High printability, shear-thinning properties, rapid and easy formation, high cytocompatibility, and bioactivity of the engineered hydrogels endow their potential as a cell laden platform for developing functional 3D bioprinted scaffolds for regenerative medicine.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

NA acknowledges the support from American Heart Association (AHA, 16SDG31280010), and National Institutes of Health (NIH) (R01EB023052; R01HL140618). AS wishes to thank the financial support of Iran National Science Foundation (INSF No. 95-S-48740) and Sharif University of Technology (Grant No. QA970816).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.biomaterials.2020.120476.

References

